

Sustainability Assessment Software

Sara Bethel, Emily Cummings, Paulina Hoang, Charles Ohrnberger, and Zurisadai Pena

Faculty Advisors: Dr. Adebayo Ogunidipe and Dr. Bradley Striebig

Background

What is Sustainability to us?

■ What is the need for sustainable assessment?

■ What is the final deliverable?

Construction

Life

End of Life

Sustainability=f (Enviromental, Social, Economic)

What is an Indicator?

A metric to quantifiably measure sustainability

Table 1: Sample of Indicators for Construction Phase

Environmental	Social	Economic
Amount of CO ₂ from transportation	Number of local workers hired	Cost of Material
Amount of water used	Inconvenience of Location	Cost of Transportation

Sustainability Matrix

	Environmental	Social	Economic
Construction	X _A	x_B	X _C
Life	X_D	X _E	x_F
End of Life	X _G	x_H	X _I

Indicator Equations

Environmental

Construction

 X_A = Composite Value

1: Total CO₂ emissions from construction vehicles

2: Total CO₂ emissions from transportation of materials

3: Total water usage during construction

$$x_A = f(y_1, y_2, y_3)$$
 (1)

 $\Sigma w_i = 100\%$

$$y_1 = \frac{X_1 - X_{min}}{X_{max} - X_{min}}$$
 (2)

$$x_A = \sum y_W = y_1 w_1 + y_1 w_2 + ... + y_n w_n$$
 (3)

Future Work

