ecoMOD SUSTAINABLE HOUSING

University of Virginia

Madeline Greenfield
Dasha Tyshlek
Trent Litsch
Andrew Barnocky

THE ECOMOD PROJECT

- A collaborative effort between University of Virginia architecture and engineering students.
- Focused on creating sustainable and energy-efficient affordable housing.

Block by Block Program 10th & Page Neighborhood Charlottesville, Virginia

"SOBO" Project
Fairmount Apartments and Ranch
South Boston, Virginia

BLOCK BY BLOCK EVALUATION

Blower Door Testing

- A tool used to measure air leakage in a building
 - Performed tests of 3 homes
 - Analyzed the data, using ASHRAE Standards
 - Developed a recommended set of most cost-effective renovations
- Effective Leakage Area & Ventilation Ratio:
 - House 1: $3.045 \text{ ft}^2 \mid 3.9$
 - House 2: $1.605 \text{ ft}^2 \mid 2.2$
 - House 3: $1.340 \text{ ft}^2 \mid 2.0$

Air Flow data were then incorporated into modeling

BLOCK BY BLOCK EVALUATION

Infrared Thermal Imaging

- A tool that can show variations in temperature, used to detect areas of heat loss and air leakage in building envelopes.
- Analysis combined with blower door results

Findings & recommendations contribute to work by AHIP

BLOCK BY BLOCK MODELING

- Floor Plans
 - AHIP
- Materials
 - ecoMOD Team
- Simulation
- Results

- SketchUp
- Open Studio
- EnergyPlus
- Results
 - Excel
 - EnergyPlus
 - OpenStudio

FAIRMONT APARTMENT MODELING

FUTURE WORK

- Improved modeling accuracy
 - Incorporating more data
- Continued analysis of homes
 - Blower door testing and infrared imaging of more homes in the Block by Block Program
- Monitoring
 - Collection of monitoring data to input into models
- Post-renovation testing and comparison to preliminary data and models

